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Combinatorics

Generalize the Basic Principle of Counting

If r experiments are to be performed, and the experiment can result in n; many different ways and
for each possible outcome (of n,), there are n, different ways the second experiment can result,
..., for each possible outcome of n,._; there are n,. different ways the rth experiment can result.

Then, the r experiments can end in n; x ny X ng X --- X n, many different ways.

Example

In a club, there are:
e 5 Freshman

¢ 10 Sophomores
e 5 Juniors

e 12 Seniors

A committee of 4 consisting of one person from each class is to be formed. How many different
committees are possible?

Solution
The first experiment is choosing the freshman, the second experiment is choosing the sophomore,
the third experiment is choosing the junior, and fourth experiment is choosing the senior.

n; =9,ny = 10,n3 = 5,ny = 12
= 5x10 x 5 x 12 = 3000

Example
How many different 7-place plate numbers such that the first three places are letters and the re-
maining four are numbers?

Solution
Choose a letter, then a letter, then a letter, then a number, then a number, then a number, and
finally a number:

26 X 26 x 26 x 10 x 10 x 10 x 10 = 175760000
Example

How many different 7-place plate numbers such that the first three places are letters and the re-
maining four are numbers, such that letters and numbers do not repeat?

Solution
Choose a letter, then a letter, then a letter, then a number, then a number, then a number, and
finally a number, but remove one option each time:

26 X 25 x 24 x 10 x 9 x 8 x 7 = 78624000



Permutations
Each ordered arrangement is called a permutation.

There aren x (n — 1) x (n —2) x --- x 1 = n! many permutations for n objects.

Formational Example
Given {a, b, c}, how many different ways can you arrange it?

Solution
Give yourself 3 spaces:

Select any first space for a, then you have 2 spaces left over for b and 1 space left over for c.
3Ix2x1=6

The possibilities are: abc, acb, bac, bea, cab, cba

Example
In a class, there are 6 women and 4 men. They will be ranked according their scores. No two
people get the same score, how many different rankings are possible?

Solution
(44 6)! = 3628800

Part B
If men are to be ranked among themselves, and women are ranked among themselves, how many
possibilities are there?

Solution
For the first experiment, rank the men. There are 4! ways to do so.

For the second experiment, rank the women. There are 6! ways to do so.

Apply the basic principle of counting: there are 4! x 6! = 17280 possible results.

Example

A professor has
¢ 4 math books
e 3 chemistry
2 history
1language

These books will be arranged such that the books on the same subject are together.

Solution
4! X 4! x 3 x 2! x 1! =6912

arrange the subjects  arrange math books  chemistry  history  language



Permutations with repeated elements

7

There are W different permutations of n objects of which there is a group of n, alike, n,

alike, ..., n,. alike.

Formational Example
How many different letter arrangements can be formed using the letters in the word “PEPPER”?

Solution
Treat them as individuals, and in that case, the answer is 6!.

Then, you need to remove the number of repeated cases, so divide by the rearrangements of the
3 Ps, 2 Es,and 1R.

6
3o ~ Y

Example

In a chess competition, there are 10 competitors:
e 4 Russians

e 3 Brazilians

e 2 Englishmen

¢ 1 Grecian

The results only list the nationalities. In how many different results are possible:

Solution
10!

= 12600
4! x 3! x 2! x 1!

Example

You have a line of thread that you want to put 10 beads on:
¢ 3 red beads

e 5 green beads

e 2 yellow beads

Assuming the beads are indifferentiable, how many arrangments are possible?

Solution
om0
31 x5l x2
Number of subsets
In general, there are
nn—1)-(n—-r+1) n! _ (n)
7! (n—r)rl  \r

ways to select r items from a collection of n.



Formational Example
Given {A, B,C, D, E}, how many different subsets of 3 are possible?

Solution
Choose 3 out of the 5 with order: 5 x 4 x 3. But you have order, so A, B, C and A, C, B are counted
as different. Therefore, we need to divide out the order:

5><4><3_

10
3!

Example
Given 20 individuals, in how many different ways can we form a group of 5?

Solution
20
( ) = 15504
5

Example
We have a group of 6 women and 8 men. How many different committees consisting of 2 women
and 3 men are possible?

Solution
First experiment, choose the women, second experiment, choose the men:

6 8
( ) x ( ) — 840
2 3
Subexample

There are two men who refuse to work together. How many committees can we form now?

(-0 (372) o

Solution

Alternatively,

Annenta problem
Given n antennas, m of which are defective, how many arrangments are there where no two de-
fective antennas are next to each other?

Solution
( n—m -+ 1)
m

Pascal's Identity



Proof
n—1 n—1
(r—1>+< r )
B (n—1)! (n—1)!
C(r=Dln—1—(r—1))!  (N(n—1—r)!
_ (n—1)! (n—1)!
S (r=Dln—1—r+1)! rl(n—1-—1r)!
 (n—1)! 1 1
_(r—l)!((n—l—r-i—l)! T(n—l—r)!)
(-1 1 1
(r=1)! ((n—r)' + r(n—l—r)')
B (n—1)! 11
B (r—l)!(n—l—r)!(n—r 1“)
B (n—1)! T n—r
- (r—D!(n—1—r)! (r(n—r) (n—r)(r))
_ (n—1)! n
o (r=1D(n—1—7) (r(n—r))
n(n—1)!
r(r—Dln—r)(n—1—r)!
n!
- ri(n—r)!
Alternative

Fix an object, and consider combinations including that object. This has (7;:11) combinations.

Consider combinations that do not include that object. There are (";1) combinations for that
situation.

Sum the two situations because they are mutually exclusive, leading to (") = ("~} ) + (™).

r—1 T

Binomial Theorem

Proof
The terms will have the form (. )z*y"~*. This leads to the whole sum >~ (7)z*y"*.

(+9)" = (21 +y1) (@2 +y2) (2, + )



The reason the terms have that form is that you have n choices, and then for a single term
you can make k decisions about where the x’s come from, leading to () options.

Example

How many different subsets of a set with n elements are there?

Solution

The number of subsets with:

Subsets with @ elements is ()
Subsets with 1 element is (")
Subsets with 2 elements is (%)

Subsets with n elements is (")

Therefore, the total number of subsets is () + () + -+ (7).

Alternative

(o) = (1) +=+(,)
- (g)a)“ln n (712)(1)11'”*1 +ot (")1"10

n
=(1+1)"
:2”

Choose for each element to include or not to include it. Therefore:

2X2X2X--x2=2"

n times

Multinomial Coefficients

A set of n distinct objects is to be divided into r distinct groups of respective sizes n,,n,, ...

How many different divisions are possible?

Proof

n!

nqlnglngl---n, !

k

)

n—k
1



- ! (n,)!

T )l —n)! " )l —ny — )l (np)ln—ny —my —mp)t (), — )]

_ n! om0 emr=m) et
I RN I T p— ey o T —— (n)(m, — 1)1

( . )
Ny, Mg, N3y ey Ny

Example
10 players are to be divided into an A team and a B team which will play in different leagues. How
many different divisions are possible?

10 10!
= — =252
9,9 515!

Example
10 children are to be divided into two teams (each 5) to play a game. How many divisions are
possible?
10 1 10!
X — = =126
55/ 72 2x5!5!
Example

In the first round of knockout tournaments involving n = 2™ players, n players are divided into 3
groups. The losers are eliminated, and the winner goes to the next round. The process continues
until there is only one player left.

Solution
With n = 23, how many possibilities are there for the first round?

8 .1.24:8_!
2,2,2,2/) A4l 41

How many ways can the tournament end?

8! 4!

.2 .93l
4! 2! 2=8

Stars and Bars (1.6)
Tq +$2++1’r =n
Trying to find (x4, 4, -, ,.), all positive integers.

Create n dots:

10



Create r — 1 seperators:

~ 00 .. @
—~ ~—— —~—
Ty T2 Ty

Therefore, there are (jf:ll) possible solutions to the equation since there is a 1-1 correspondence
to the arrangements.

What about the number of nonnegative integer solutions?
To solve the equation:
Yyt Yoy, =n
To transform it into the previous problem, add one to each input to make it positive:
i+ D+ @+ )+ -+ Y, +1) =ntr

So now 'n" = n + r, leading to the solution:
<n +r— 1>
r—1
Example

Given n antennas, m of which are defective, how many arrangments are there where no two de-
fective antennas are next to each other?

Solution
Put down the defective antennas in some order:

VVVVYVYY
Between every two defective antennas, you have to put down at least 1 one antenna:
AN AN AN AN VAN VANL " VAN
The ones on the ends are optional.

This is then the same as selecting solutions to

Tyt Tyt A Ty g+ (T 1)+ (T 1) =n—m+2

between edges

(n—m+2—1> B (n—m—i—l)
m+1—1 - m

Which is the same as what was previously achieved.

This then leads to the solution:

Experiments
The set of all possible outcomes of ann experiment is called the sample space, denoted S.

1



A subset E of a sample space is called an event. If the outcome belongs to F, then we say that
FE has occurred.

Formational Experiment: rolling d6
Roll a die.

The sample space of the output is:
S ={1,2,3,4,5,6}
Assume you want even numbers:
E ={2,4,6}
FE occurs if the outcome of the experiment is € E, IOW if it is 2, 4 or 6.

Example: childbirth
Childbirth: the outcome is determined by the sex of the child.

Then S = {boy, girl, intersex}.
Define E = {boy}. Then E occurs if you have a boy.

Example: 7 horse race

H = {hy, hg,...,h;}. 7 horses are in a race: the outcome is determined by the finishing order of
the horses.

S = {all permutations of H}

Example: flipping 2 coins
The experiment consists of flipping 2 coins:

S ={(h,h), (h,t), (£, h), (t, 1)}
At least one head:
Ey = {(h,h), (h,1), (t,h)}
At least one tail:

E, = {(ha t)a (tv h)7 (ta t)}

Example: Lifetime of a transistor
S={z|z >0}

The transistor lasts less than 4 units of time:

E={z|0<z <4}

Union
Let F,, E, be two events associated with a sample space S.

The union E; U E, is the event consisting of all outcomes that are in E,, E, or both.

12



In other words, E; U E, occurs if either E, occurs, E, occurs or both occur.

Example

S =A{(h,), (&, h), (h, h), (¢, 1)}
Let E, be the set of at least one head, and let E, be the set of at least one tail.
Then, this means that £, U E, = {(h, ), (¢, h), (h,h), (t,t)} = S

Intersection

Given E,, E, their intersection E, E, (E; N E,) consists of all outcomes belonging to both E; and
E2-

Example

Use the coin example again:

E,E, = {(h,t),(t,h)} = exactly one head and one tail

Complement
Given E in S, the complement event is denoted by E° or E’ and consists of all outcomes in S but
not in S.

In other words, E° occurs if E does not occur, and if E occurs, E° does not occur.

Null event
& denotes the null event and never occurs.

2.3

Mutually Exclusive Events
Events E,, E,, ..., E, are mutually exclusive iff:

Vi,je€ZN[L,r)i#j— EE, =@

Probability
For each event E in S we assume that a value P(FE) is defined such that:

1.0<PE)<1
2. P(S)=1
3. For any set of mutually exclusive events E,, E,, ..., E,:

P (U E) = Z P(E;)

Formational Example: Relative Frequency
Assume E is an event, and an experiment defined by the sample space S is repeated n times.

Let n(E) denote the number of times E occurs.
n(E)

n

Then the relative frequency of F is

13



The probability of E is then lim,,_, B

But how do we know that this limit exists?

Conjugate
Given E and E°:

Proof
E and E° are mutually exclusive.

By axiom 3, P(E U E°) = P(E) + P(E").
By axiom 1, P(EU E°) = P(S) = 1.

Therefore:

Sample Spaces with equally likely outcomes
Assume a sample space S consists of equally likely outcomes. Then,

P(E) = # outcomes belonging to E
B # outcomes in S

Formational Example: Probabibility of a Die
Considering a 6-sided die such that all sides are equally likely, each side has probability %

Proof
Consider a 6-sided die such that all sides are equally likely.

Consider the mutally exclusive events, £, = {1}, E, = {2}, ..., Eg = {6}.
By the axioms, P(S) =1
S=E,UE,UUE,
1=P(S)=P(E,UE,U--UEg) = P(E,) + P(E,)+ -+ P(Es)
1=6P(E,)

:P(El)

1
6
Therefore, for example, P({2,4,6}) = P(E,) + P(E,) + P(Eg) = s+ ¢+t =2 = 3.

Example
If 3 balls are randomly drawn from a bowl containing 6 white and 5 black balls, compute the prob-
ability that 1 is white and 2 are black.

Solution
E = 1white, 2 black.

14



The number of events in S is (5+6) The number of events in F is (‘f)(g)

Therefore:

6\ (5

P(E) = (1)(3) _ 60 4
( 5+6) 165 11
3
Alternatively, the number of events in S is = 3),,andthere are 6 X 5B x4 x 3 events
N——— el
whlte black move white around

in E.
Therefore:

6 x5 x4x 3 360 4
P(E) = 11! T 990 11
a1—3)!

Probability of the union of two events
P(E1 U EQ) = P(E1) + P<E2) - P(E1E2)

Proof
I=E;\ (E1E2>
II=FEFE,
IIT=FE,\ (E,E,)
We know E, U E, = TUIIUIII and that the events are mutually exclusive.
P(E,) = P(E, \ (E\E,)) + P(E, E,)
P(E1) - P(EIEZ) = P(E1 \ (E1E2))
P(El) - P(E1E2) = P(I)
P(E,) = P(E; \ (E\E))) + P(E, E))
P(E,) — P(E,E,) = P(E, \ (B E,))
P(E,) — P(E,E;) = P(III)
P(E,UE,) =P(I)+ P(II) + P(III)
= (P(E,) — P(E\E))) + (P(E\Ey)) + (P(E;) — P(E\Ey))
= P(E,) + P(E;) — P(E, E;)

n ¢ n
E | =[)Ef
i=1 =1

() -0

DeMorgan’s Laws

NS

15



Example
Jude is taking two books along on her vacation.

She likes the first book with a probability of 0.4, the second with a 0.2 probability and she likes
both with a 0.1 probability.

Compute the probability she likes neither.

Solution

Probability of the union of three events
P(E, UE,UE;) = P(E,) + P(E,y) + P(E;) — P(E\E,) — P(E,E;) — P(EyE3) + P(E By Es)

Proof
P(E,UE,UE;)=P(E,UE,)+ P(E;)— P((E, UE,)NE;)
= P(E,) + P(E,) — P(EyE;) + P(E;) — P(E E3 U EyEy)
= P(E,) + P(E;) + P(Es) — P(E\E;) — (P(E, E3) + P(EyEy) — P(E| EgE, Ey))
= P(E,) + P(E;) + P(Es) — P(E\E;) — (P(E, E3) + P(EyEy) — P(E, Ey Ey))
= P(E,) + P(E;) + P(Es) — P(E\E;) — P(E\Es) — P(E,Es) + P(E, E, Ej)

Inclusion-Exclusion Principle
P (U E) => P(E,)-> P(EE;)+ > P(E,E;E)+-+(-1)"" P(E,EyE,)
i=1 i=1 1<J 1<j<k

Example: Matching Problem

Suppose that each of the N men at a party throws his hat into the center of the room. Then, the
hats are mixed up, and each man randomly selects a hat. What is the probability that no man
selects his own hat?

Solution
Let E;, 1 < i < N denote the event where the ith person selects his own hat.

Then, the probability that no man selects his own hat is:
P(ESNESNESU-UEY)
= P((E, UE,U--UEy)")
=1—P(E,UE,U--UEy)

16



N
> P(E;)
i=1
o Z P(E%Eiz)

i1 <ig
+ > P(EilEiins)

i) <ig<is

+-0 N P(EL B,

1172
1y <tp<-<iy

+(—=1)"" P(E, Ey-Ey)

Define probabilities:

P(E- E. Ek) =

11712

Use them:

17
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11 <19

+ Z P(Eil Eiz Eis)

iy <ip<iz

+H) 3 P(B, B,

O P(B, By B
()5 -G)6)

+ (_1)k+1 (N) M + ..

k N!
H ()

Simplify:

(—1)k+1 <N> (N —k)!
k N!
N! (N —k)!
E(N —k)! NI
(_1)k+1
k!
Therefore, the probability nobody gets their hat is:

_ (1)

N (_1>k+1
1_,; k!
N (_1)k

=y

Furthermore,

N k
m (=1 _1
lim —~ T = E ~ 0.367879

Example: Straight
10 x (45 —4)

(%)

P(straight) =

(N — 3)!

N!



Overlapping Birthdays
Assume there are n people, with 365 possible birthdays. Compute the probability that they have
different birthdays.

!
365 x 364 x ... x (365 —n —1) @é?énﬂ

365™ 365™

Conditional Probability

Conditional Probability
P(E|F) denotes the conditional probability that E occurs given F' has occured.

Assume P(F) >0

P(E|F) =

Formational Example
Two dice are rolled. Assume that the first die shows a 3. Compute the probability that the sum of
the two dice is 7.

Solution
The second dice must be a 4. Therefore, P = %.

Alternatively:

With the sums:

St = {4,5,6,7,8,9}
Leading to a £ probability.

Example
Joe is 80% certain that his missing key is in one of two pockets. He is 40% sure it is in the left
pocket and 40% sure it is in the right pocket.

Given he checked his left pocket, and there was no key, what is the probability it was in the right
pocket?

Solution
Let L be the event the key is in the left pocket and R for the right pocket.
P(RNL%) 04 04 4 2

P(LY) 1-04 06 6 3

P(R|L®) =

Conditional Probability for Equally Likely Sets

19



|ENF|
||

P(E|F) =

Example

A coin is flipped twice. All four outcomes are equally likely. What is the conditional probability that
you get two heads given:
1. The first coin is heads:

S = {((ha h))’ (ha t)v (tv h)a (ta t)}
F= {(hvh)v(hvt)}
E = {(hvh)}

1

2
2. At least one coin is heads:

S = {<(h’ h))? (h’t)v (t’ h)’ (t’t)}
F = {(h’a h): (h7t)a (tv h)}
E = {(hvh)}

1
3
Multiplication of Probabilities
P(EF) = P(F)- P(E|F)
This can be generalized to:

P(E\EyE;) = P(E3|E,E ) P(E, | E)P(E,)

P(E1E2"'En) = P(En | E1E2‘”En—1)"'P(E2 | El)P(El)

Example

An urn contains 8 red and 4 white balls. We draw 2 balls out without replacement. Compute the
probability that

1. Both are white

P(E, | B,)) = P(E, | E\)P(E,) = () (&) =&

—_

Hat Matching Problem

(=*
K

We have computed the probability that nobody gets their own hat: zfj:o
Compute the probability that exactly & of the N men pick his own hat.
Fix a particular order of people: {1,2,3,....,k,k+1,..., N}.

P(set of k people take their own hat) = P(remaining take someone else's | the fixed set picked their own)

Furthermore, we can create a recurrence:

20



N (_1)k
= k!

k=0
Resulting in:
11 1 1 = (—1)!
N N-1 N-2 N—(k—1) & i
(N —k)! = (—1)
- N Z; i!
1 N— i
Something

Take two sets, E and F.
E = EF U EF°. This is a disjoint union.
P(E)= P(EF)+ P(EF°)
=P(E| F)P(F)+ P(E | F°)P(F°)

Example
There are two types of people, people who are accident-prone, and those who are not accident-
prone.

If someone is accident-prone, they will have a 0.4 probability of having an accident. If someone
is not accident-prone, the probability of having an accident is 0.2. Assume 30% of the society is
accident-prone. Compute the probability that a new customer will have an accident.

P(A,) = P(A; Naccident-prone) U P(A; N not accident-prone)

(
= P(A; Naccident-prone) + P(A; N not accident-prone)
= P(A, | accident-prone) + P(A; | not accident-prone)
P(A, | accident-prone)P(accident prone) + P(A; | not accident-prone)P(not accident-prone)
= (0.

4)(0.3) +(0.2)(0.7)
=0.26

Given a customer had an accident, what is the probability that he/she is an accident-prone person?

P(A; Naccident prone)  0.12
P(A,)) 026

P(accident-prone | 4;) =

Probability when breaking down set
Fy, Fy, ..., F, are disjointand J"  F; = S.

21



E=FF, UEF,U---UEF,
P(E)= P(EF,)+ P(EF,)+--+ P(EF)
= P(E|F,)P(Fy) + P(E|F,)P(F,) + -+ P(E|F,)P(F,)
Example
There are three types of flashlights in a bin, I, IT and III.

The probability that a type I flashlight will give more than 100 hours of light is 8.4, for type II this
is 8.4 and for type III this is 0.3.

Suppose 20% of the flashlights are in the bin are type I, 30% are type II and 50% are type III.
P(E) = P(E|T,)P(T\) + P(E|T,) P(T3) + P(E|T3) P(T3)
Independent Events
Two events F, F' are independent if
P(EF) = P(E|F)P(F) = P(E)P(F)
P(E|F) = P(E).

Example
Two coins are flipped. E is the event the first coin lands on heads. F' is the event that the second
coin lands on tails.

Check if E, F' are independent.
EF ={(H,T)}
E= {(H’H)7(H’T)} F= {(HvT)’<T’T)}

Yes

E, F are independent.

Example
You are rolling two dice. Let E be the event that the first one shows 4, and F' be the event that the
sum is 4.

4-1

PE) = 1P(F) =22 P(EF) =0

22



Not independent events.

Independence of n events
P(EF) = P(E)P(F)P(EG) = P(E)P(G)P(FG) = P(F)P(G)P(EFG) = P(E)P(F)P(G)

n events E,, E,, ..., E, are independent if for any subset {Ei1 ¥ P Elk}
P(Ei1Ei2mEik) - P(Eil)P(Eiz)mP(Eik)

Example
An infinite sequence of independent trials will be performed. Each trial ends with a success with
a probability p. There will be a failure with probability 1 — p.

1. At least one success occurs in the first n trails.

P(at least one success) = 1 — P(all n trails are failures)

Let E; be the event that the trial i is a failure. P(all n trails are failures) = P(ﬂ?zl EZ)

P (ﬁ E) _ P(B,)P(E,)-P(E,)

= 1— P(E,)P(E,)--P(E,)
=1-(1-p)1—-p)-(1-p =1-Q1-p)"
Example
BB — brown eyes, Bb — brown eyes, bb — blue eyes.
When you get your genes, they are independently selected from both your parents.

Smith’s parents both have brown eyes, and his sister has blue eyes. He also has brown eyes. This
implies that both his parents have Bb genes.

Compute the probability that he possesses the blue-eyed gene.

B |b
B | BB | bB
b|Bb |bb

Therefore, 2 is the probability.

If Smith’s first child has brown eyes, what is the probability that his second child has brown eyes
as well? He has a wife with blue eyes.
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P(first and second child have brown eyes)
P(first child has brown eyes)

P(second child has brown eyes|first child has brown eyes) =

P(1st & 2nd brown eyes N Smith blue-eyed gene) + P(1st & 2nd have brown eyes N Smith does not have blue-eyed gene)
P(1st has brown eyes N smith has blue eyed gene) + P(1st has brown eyes N Smith does not have blue-eyed gene)

1.1 2 1
_____ +1-1-12 3

_ 223 _°

- 1 2 1 -

37 5tlg 4
B [b
Bb | bb
Bb | bb

Random Variable
Real valued functions defined on the sample space are called random variables.

Formational Example

Take the sum of numbers observed when you toss two dice together.
(1,1) — 2, so f(z,y) = = + y is the random variable.

This has the sample space {2,3,4,5,6,7,8,9,10,11,12}.

Example

Suppose 3 coins are tossed together. The random variable y is defined as the number of heads
observed in the experiment.

(H,T,H) — 2
(T, T,T) — 0

Find P(y = 0) = (3) - (

N~
S~—
—
N =
~—

Find Ply=1)=3%-(3)- () (3)
Find P(y=2)=5-(3)- (3) - (3)
Find P(y =3) = (3) - (3) - (3)

Example

Let O be the event that the older client dies in the following year. P(O) = 0.1. Let Y be the event
that the younger client dies, P(Y) = 0.05. O, Y are independent events. For each death $100k is
paid to the beneficiaries. X is the total amount of money paid by the agent to the beneficiaries of
these two clients in the following year, in units of $100k.

X €{0,1,2}.

P(X=0)=POY')=(1—0.1)-(1—0.05) = 0.855

P(X =1)=P(OY)+ P(Y’0O) = (1 —0.1)(0.05) + (0.1)(1 — 0.05) = 0.14
P(X =2) = P(OY) = 0.1-0.05 = 0.005
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Example

Experiments draw 4 random balls from a bowl containing all balls numbered from 1to 20. Let X
be the largest of the 4 numbers obtained.

X € {4,5,6,...,19,20}

(3)
PX:@ =
H=0="0
P(X>10)=1—-P(X <10) = &)

Example

A coin (with probability p of landing on heads). It is flipped continuously until a head occurs or the
maximum number of flips n has occurred.

Let X be the number of flips in the experiment.
X e{L,2,..,n}
PX=1)=p
P(X=2)=(1-p)p
k<n,P(X=k)=(1-p)"'p
PX=n)=(1=p)"+(1—p)" 'p=(1—p)" (1—p+p)=(1-p)""
Show the sum of the options is 1.

n—1

P(X <n)= Z (1 —p)kflp =1-(1 _p)n—l

P(X<n)=P(X<n)+PX=n)=1—(1-p)" '+(1—p)" ' =1
Alternative done in class:

PX<n)=p3 (1) +(1—p)" = (%)m—m"

Discrete Random Variable

A random variable that can take on at most a countable number of possible values is called dis-
crete.

For each random variable, we define a probability mass function p(a) = P(X = a).

Let X € {z4,...,z,}. Then E?Zl p(z;) = 1.
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Example
Let X be a discrete random variable, where ) is positive and fixed.

. X
p(i) = Sy
1.
o0 o0 )\7,
_ A
S0 =3 e
=0 =0
Since the sum should equal 1, ¢ = ¢
p(0) = e

Expected Value

If X is a discrete random variable with a probability mass function p(z), the expected value of X
denoted E[X] is defined by:

E[X] =) zp(z)
E[z] is a weighted average of the possible values for X.

Example
A 6 sided die is rolled. Let X be the outcome of the experiment.

EX]=1 1+2 1+3 1+4 1+5 1+6 L_7
6 6 6 6 6 6 2

Example
Let A be an event associated to an experiment.

Let
_ {1 if A occurs
0 if A does not occur
Then:
E[I] =1-p(A)+0(1—p(A4)) = p(A)
Example

On bus 1there are 36 students, on bus 2 there are 40 students, and on bus 3 there are 44 students.
Let X be the number of students in the bus of a randomly selected student.

36 40 44 604
EX]|=3 -—+40- — +44 - — = — =~ 40.2667 > 40
%] 120 * 120 * 120 15

Example
The expected value for a function of a random variable X, p(X),
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If X is discrete, that takes on one of the values z,,i € N with respective probability p(z;), then for
a function g,

Elg(X)] = Zg(:cz)p(acl)

Example
Assume X is a random variable with possible values —1, 0, 1, with probabilities 0.2, 0.5, 0.3.

Compute E[X?].
E[X? = (-1)*-02+(0)*- 0.5+ (1)*- 0.3 = 0.5
Furthermore, E[X?] > (E[X])? for any random variable (by triangle inequality presumably).

Corollary about the expected value of a linear function of a random variable
ElaX +b] = Z(aw +0b)-p(z) = Zaxp(a;) + pr(x) = aZ:cp(x) + pr(ac) =aF[X|+b-1=aFE[z]+b
~ ElaX +b=aFE[z]+b
This result could also be achieved by the linearity of the sum operator.

Example
Assume X is the number of guests to attend a party. Let Y be the cost of the party. Then, Y =
10X + 20 if for each person the party costs 10 and there is a constant 20 spend on decoration.

If E[X] =5 (you expect 5 people to go to your party), then E[Y] = 10-5 + 20 = 70.

Shortcut
The shortcut to computing the probability that a sum of 5 occurs before a sum of 7.

Let E be the event that a 5 occurs before a sum of 7.

P(E)=%+O-P(E)+P(E)- (1-%)

2
= P(E)=-
5
Variance
Let X be a random variable where E[X] = p. Then, the variance is defined as E [(X — u)z].

Alternative Form
Assume X has probability mass function p(x).
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Var(X) = E[(X — p)*] = B(X? — 2uX + pi?)
= Z (2 — 2uz + p?)p(x)

=> (a? Z%wp +Zup
:Zx p(x —2,uprm +,u22pa:

= E[X?] = 2pp+ p2(1)
= E[X?) —2p® + 12
= E[X?] - p?
Therefore E[X?] > (E[X])?

Example
What is the variance of the value a die lands on?

E[X]=35
E[X?] = 1p(1) + 2°p(2) + 3%p(3) + 4°p(4) + 5%p(5) + 6°p(6)
_1 4,9 16 25 . 91
67666 " E =%
Var(z) = E[X?] — E[X]* = % - (;) =2.916

Example
Suppose there are m days in a year, and each person is independently born a day r with probability

p,. This then implies that Z;":l p, =1
Let Am- be the event that person ¢ and person j are born on the same day.

1. Find P(A, 3).
= P11+ PoPy + -+ Dy = PP
T

2. Find P(A,; 34, ).
>y
YR
3. Show P(A, 3|4, 3) > P(A; 3).
Define X = p, with probability p,.
Then, 3-"" p} = E[X?] and 3" p} = E[X].
So then EP? § E[X] < E[X?] > E[X]? which is proven.
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Bernoulli & Binomial Random Variables
For Bernoulli (1 trial binomal):

X 1 with probability p
~ 10 with probability 1 —p

For Binomial, with n independent trials with each having probability of success p:
n n—x
p) = (] )pr1-p)

Then then creates the expected value:

Bix) =Y (M) )

=0
B glzu(nni A

- ino "ii i(,'ll)anl)—' i)'pi(l -

B i"O Vili— 1)!(?7571_1)1)_' = 1)),19’(1 —p)""

— l; zz(l — 1),(?7571_1)1)_' = 1)),pp’ 1(1 — p)D=0-D
S D e

- i n—1)—j
=np Y ( : )pj(lp)
i=o \ J
sum of probabilities for a binomial distribution

:np

Show the sum of probabilities for the binomial distribution is actually 1:

Variance:
Var X = E[X?] — u?

=np(1 —p +np) — (np)°
= np(1 —p)
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Example
Let the probability of a girl in each birth be 0.55. Assume births are independent.

If a couple has 4 children, the number of girls they will have is represented by X ~ B(n =4,p =
0.55).

Poisson distribution
If X is a discrete random variable with a probability mass function
i€{0,1,2,...}
. WA
p(i) =e ’\ﬁ
Then we say X has a Poisson distribution with parameter .

1. The probability that exactly one event occurs in a given interval of length h is Ak + o(h)
e lim (h) =0
h—0
2. The probabmty that 2 or more events occur is ©(h)

3. The events occur independently in nonoverlapping intervals.

If a time interval has a length t, X ~ Poisson(At), and X is the number of events in the interval.

Expected Value
o )\z 1

E[X]=; AZ i

—,_/
sum of all probabilities

Variance
This is similarly easy to prove:

Var X = )\

Example

Earthquakes occur according to a Poisson process at the rate of 2 per week. Let X be the number
of earthquakes in 1 week.

X ~ Poisson(2)
What is P(X > 4)?

20 2! 22 23
PX>4)=1-PX<3)=1—|e?—+te?—=+e?—+e?=—

Furthermore, if Y is the number of earthquakes in 3 weeks, Y ~ Poisson(6).

Example
A textbook has 500 pages. For each page, the probability of having a typo is 0.01.

Compute the probability that there are 2 pages with typographical errors.

Let X be the number of pages with errors.
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X ~ Binomial(n = 500,p = 0.01)

This is similar to the Poisson distribution with A\ = 5, because over the entire book, you expect
there to be n - p = 5 pages with errors.

Note that the variance is 5, and for the binomial distribution, it is 4.95, which is about 5.
X ~ Poisson(5)

2

P(X=2)~P(X=2)= e5% ~ 0.0842243

Q

P(X =2) ~0.083631
This method, in this instance, has an error of about 0.000593304.

Theorem on Approximating Binomial distribution with Poisson

Given a X a random variable with a binomial distribution with parameters n, p, if n is large, and

p is small enough, The distribution of X can be approximated by the Poisson distribution where
A = np.

| x x
n A_e—A ~ e—/\>‘_
z!(n —x)!n® x!
| T x
e A
(n—x)n® x! x!
x x
AN N
x! x!

Geometric Random Variable

X is the number of trials until and including the success. Trials are independent, and there is a
probability of success of p.

Xe{1,23, ..}

Then, p(z) = (1 —p)* 'p.

Example

Assume the probability of getting a girl or a boy is 0.5 each, and births are independent.
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In a town, each couple will have children until they get a girl. On average, how many kids will a
household have?

1 1

EX]|=-=—=2

p 05

Negative Binomial Random Variable

Let X be the number of trials until and including the rth success.

In other words, there needs to be r successes, and you should stop as soon as you get r successes.
Trials are independent, and the probability of success is p.

Xe{r,r+1,r+2,..}

p(z) = (f B 1) (1—p)""p"

There are two parameters, r and p.

Var(X) =

Expected values sum by the linearity of the sum operator.
Hypergeometric Distribution
Overall let there be N items, with m special.

Draw a random sample of n items (without replacement is implied). Let X be the number of special
items selected.

Because it is drawn without replacement, trials are not independent.

(5 ()

p(z) = )
Blx] = =

vt -o(3)(-) (-3

Continuous Distributions

Expected Value/PDF
For a discrete value, the expected value is:

> ap(z)
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This corresponds to

/: zp(x) dx

but p(x) is a probability density function here.

For discrete values,
> plz) =1

Which corresponds to

Example
Let X have the pdf

_J: ifo<az<2
-

otherwise
0o 2 T 2 .’I,'2
E[X] = zf(z)dz= | z=dz= | —dz==(23-03)
—00 0 2 0 2

Functions
Given X, a continuous random variable with pdf f(z), for any function H(X),

B0 = [ H@) S

Example
Let Y = eX, where X is defined by the pdf

z ifo<zx<?2
fl@y=42 NO=T=
0 otherwise
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Example
X is defined by the pdf

z fo<z<?2
f@y=32 T°=7=
0 otherwise

What is the variance?

ElX]=4%
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0o 2
E[XZ]—/ ZEQf(JJ)dZE:/ x2gdx
—00 0
B z 2_24 0 B
T 4.2 23 93
0

4\% 18 16 2
VarX:E[XQ]—‘u2:2f — _- —  —— = —
3 9 9 9

Cumulative distribution function
Given X, a continuous random variable, the cumulative distribution function, F(u) = P(x < u) =

f_uoo f(z)dx

Example
Let X be arandom variable with pdf f(z).Let Y = 2X, and derive the probability density function
fy (y) for y.

Therefore,

Uniform Distrubtion

L a T
f(w)={—“ cre?

b
0 otherwise

The CDF is then:

0 r<a
Flz)=< 32 a<z<b
1 b<z

The expected value is E[X] = %(a +b)
1
E[X?] = g(a2 + ab + b?)

The variance is

35



(b—a)”

Var X = E[X?] — E[X])* = -

Example

Buses arrive at the station every 15 minutes, starting at 7 am. If a passenger arrives at a time that
is uniformly distributed between 7 and 7:30 am, what is the probability that they will wait less than
5 minutes?

To arrive to wait less than 5 minutes, he needs to arrive between 7:10 and 7:15 or between 7:25
and 7:30.

0 zz<0
fl)=<3 0<z<30
0 30<=z

Then

15 30 1
z)dz z)dr = —
() +/2 f(x)

10 5

is the probability that they will wait less than 5 minutes.

Normal Distribution
We say X has a normal distribution with parameters p, o2 is:

2

_1(z—p)
2
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And therefore

Moving Normal

If X is normal with parameters p and 02, Y = aX + b, Y is normal with parameters au + b and
2 2

a“o~.

y — Ta 1 _l(z—p 2
Fy(y)=P(Y <y)=PaX+b< :P(X< ): e 2(55") dz
v (¥) (Y <y) ( Y) - o
1 1(y=b-ap)?
fr(y) = em3 ()
aoV 2w
—(a 2
_ 1 . 1(y (angb))
aoV 2w
Therefore, Y is normal with parameters (au + b, a?0?).
Standard Normal
If X ~ Normal(p, 02)
X — 1
Z = g Normal(ﬁ — /i, —202) = Normal(0, 1)
g g g o

The normal distribution with parameters © and 1 is the standard normal. It is usually denoted Z.

You can also know E[X] = ¢E[Z] + p and Var(X) = % Var(Z).
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And therefore, the Var(Z) = 1.

Note that ®(z) =1 — ®(—z) = ®(—z) = 1 — P(z).

Fx(x)=P(X<ac)=P(UZ+u<x)=p(Z<x—u> =<1>("”‘“)

g g
Example
If X is normal with u = 3 and 02 = 4
1. P2<xz<5)
5—3 2—3 1 1

= (0.841345 — 1 4 0.691462 = 0.532807
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