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Proof

Preliminaries

Set Operations
Let A and B be sets.

Intersection
ANB={z|z € ANz € B}

Union
AUB={z|z € AVzx € B}

Singleton
A set containing only one element

Universal Set
Denoted U, all sets are subsets of U.

Properties of union and intersection
1. ANBCA
2. AnBCB
3. ACAUB
4. BCAUB

Complement

If there is a universal set, A€ is the set of all elements in the universal set but not in A.

Minus
Denoted A \ B, it is all the elements in A that are not in the elements in B.

Furthermore, A\ B = AN BC.

Subset
A set A is a subset of a set B if every element in A is also in B.

For example, if A = {1,2,3}, B={a,b,¢,1,2,3}, A C B.

Empty Set
The empty set has nothing in it. It is denoted .

Functions

A function from a set A to a set B associates an element of B with each element of A.

A is called the domain, and B is called the codomain.
f:A—B
flz)=22+3
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If A={1,2,4},{5,7,11} C B.
For each element z € A, f associates x with someone element y € B.
We write f(z) = y. We say f maps z to y.

Example

f:RN{2} =R

Image
Let there be a function f: A — B

f(A) ={yly=flz) Nz € A}
The image of A is then f(A)
Injective/One-to-one
f: A — Bisinjective if:
Vi, 7y € A, f(z1) = f(23) = 71 = 29
Therefore, if f(x) = y, then z is the only element of A that f maps to y.

Example
f(z) = 3z + 1 is one-to-one, f(z) = x2, is not one-to-one

Surjective/Onto

f:A— Bisasurjection if f(A) = B.

Ve e B,Jye€ A,z = f(y)

Bijective

If f is injective and surjective, then f is bijective.

Set Cardinality

A set’s cardinality is the number of elements in the set.

Two sets A and B have the same cardinality if there exists a bijection function f : A — B.

Example
Z, Q, N and A have the same cardinality, called countably infinite.

Existence of Inverses
An inverse of a function exists iff a function is bijective. The inverse of f is denoted f~!.

Axioms of Real Numbers
R are built based on three axioms:
1. Field Axioms
1. Commutativity of addition: Va,b e R,a+b=b+a



Associativity of addition: Va,b,c e R,a+ (b+¢) = (a+b) + ¢
Additive identity: there is a real number, denoted 0, such that Va e R,0+a=a+0=a
Additive inverse: for each a € R,3b € R so that a + b = 0.
Commutativity of multiplication: Va,b e R,a x b=b x a
Associativity of multiplication: Va,b,c € R,a x (b x ¢) = (a x b) x ¢
Multiplicative identity: there is a real number, denoted 1, such that Va € R,1 x a = a X
1=a
Multiplicative inverse: Va € R,a #0 — b € R,ab =1
9. Distributive property: Va,b,c € R,a(b+ ¢) = ab + ac.

10. Nontriviality, 0 # 1.
2. Positivity axiom

¢ How Reals are ordered
3. Completeness axiom

¢ Reals have no gaps

NOoOokMoDN

o

Proposition 1
The element 0 is the only real number satisfying the additive identity property.

Proof
Suppose dz € R, so that Va € R,z + a = a.

Let b be the additive inverse of a.

=z+0
=z+ (a+0b)
=(z+a)+b
=a+b

Therefore, z = 0.

Proposition 2
The element 1 is the only real number satisfying the multiplicative identity property.

Proof
Suppose Jdz € R, so that Va € R,z X a = a.

Assume a # 0, and then let b be the multiplicative inverse of a. Then,

z
=1xz
—axbxz
=zXaxXb
=axb
=1



Proposition 3
Va e R,0a =a0=0

Proof
Let a € R, and let b be the additive inverse of a.
0

=a+b
=1la+b
=(1+4+0)a+b
=la+0a+b
=a+0a+b
=a+b+0a
=04 0a
= 0a
=a0

Proposition 4

Ifa,b € Rsuchthatab=0,a=0Vvb=0
Proof

Let a,b € R, such that ab = 0.
Ifa=0,a=0V0b=0is true, because a = 0.
Otherwise, WLOG, suppose a # 0.

Then, there is a multiplicative inverse ¢ of a such that ca = 1.

0
=c0
= c(ab)
= (ca)b
=1b
=b
Therefore b = 0, and similarily b £ 0 — a = 0, and so a = 0 V b = 0 is always true.

Proposition 5
Va € R there is a unique solution z to the equation a + x = 0.

Proof
Leta € R.

Let b be the additive inverse of a. Therefore, x = b is a solution.

By contradiction, suppose = = y also a solutionto a + x = 0, b # .



b

=b+0

=b+(a+y)

=(b+a)+y

=(a+b)+y

=0+y

=Y
But by assumption b # y, so our assumption was wrong, and therefore there is only one solution
ztoa+z=0.

Since each a € R has a unique additive inverse, we denote it by —a and define subtraction by a —
b=a+ (-b)

A similar proof show for any nonzero a € R, we have a unique multplicative inverse, denoted by
a1, and define the quotient of @ and b as

a
—=ab!

Exercises

Prove the following:
1. —(—a)=a

2. (b =0

3. (b)) = —(b)
4. (—a)b = —(ab)
5. (ab~1) " =a"lb

Positivity Axioms of Real Numbers
There is a subset P, called positive numbers, of real numbers with the following properties:

1. a,beP—aba+belP

2. Ya € R, exactly one of the following is true:
1. aeP
2. —a €P
3.a=0

These axioms let us define > or < operators.

Leta,b € R.

lLa>bifa—beP
2. a<bifb—acP
.a=bifa—b=0

Then,a € P < a > 0.

Proposition
If a € R\ {0}, then a? > 0.

10



Proposition
IfacP thena !t eP

Proposition
Ifa>b(c>0—ac>bc)A(c<0—ac<be).

Interval Notation
Let a < b, then we define

1. (a,b) ={z €eR|a <z <b}
2. [a,b] ={z eR|a<z <)}
3. (a,b] ={z eRla<z < b}
4. [a,b) ={z €eR|a <z <]}

Inductive Set

A set S is inductive iff
1.1e€S

2. VxeS,x+1€S8§

Natural Numbers: N
Let I be the collection of all inductive sets.

Define:

N=(S

Sel

Proposition
The natural numbers N are inductive

Proof
First point:

vSel,leS—1e()S
Sel

Second property:
LetzeN.ThenVSel,zreSandVSel,z+1€S

Therefore, N is inductive.

Properties of N
Forn,m e N:

1. m+neN
2. mxneN

Integers: Z
Z=NU{0}U{—=zx|z € N}

1



Properties of Z
For n,m € Z:

1. m+neZz
2. m—n€EZ
3. mxXnéeZ

Rationals: Q

o= {5 mezms)

Proposition
Q satisfies the field and positivity axioms.

Proposition
Va,b € Q,a<b,dc€Q,a<c<d
Proof:
Let c = %2 ¢ € Q by the field axioms.
a+b b—a 1
I —a = =—(b—a)>0
a 5 2( a)

Facts
1. Each rational number can be written as * where either 2t m v 2 { n..
2. An integer n is even iff n? is even.

Formational Example
fle) =a® —2
f(1) <0, f(2) > 0 It would be good if J¢,1 < ¢ < 2, f(c) = 0.

But this is impossible in the rationals.

Proposition
There is no rational number a so that a? = 2.

Proof
On the contrary, assume a € Q where a? = 2.

Therefore, a = ™, m,n € Z. By a fact we know that either m or n is odd.

m

a=—

n

2

m
2:(12:—2
n
2n? = m?

Therefore, m? is even, which means that m is even.

Since m is even, 3k € Z, m = 2k.

12



Thus,

2n2 = m?
o2n2 = 4k2
n? = 2k>

Therefore n? is even, which means that n is even.
Both n and m are even, which is a contradiction.

Therefore, there is no a € Q with a? = 2.

Tools of Analysis

Bounded Above

A nonempty S C R is bounded above if
deeR,VzeS,z<¢c

¢ is then an upper bound.

Bounded Below

A nonempty S C R is bounded below if
deeR,VzeS,c<z

c is then a lower bound.

Completeness Axiom

Every S C R that is bounded above has a least upper bound ¢ so that Vz € S,z < c and if b is an
upper bound of S, ¢ < b.

Definition of Real Numbers
Any set that satisfies the

¢ Field axioms

e Positivity Axoims

e Completeness axiom

is equivalent to R

Supremum
The supremum of a set is the least upper bound of that set.

Example
sup([2,3)) = 3.

Infimum
Every S C R bounded below has a greatest lower bound, ¢ = inf S

V2ER

IOW, Ja € R=0 a2 =2

13



Proof
Let S={z e R|z >0,z <2}.

2 is an upper bound. Let a = sup(S)

a’?—2

5a r > 0.

On the contrary, assume a? > 2. Let r =

a2—2_

24

r>0
(a—r)° =a®—2ar+r2 > a2 —2ar = a®> — 24 2

VeeS, (a—r)’>2a—r>z
a—r<a,a<?2.

(incomplete)

Archimedean Property
1. Forallc € R,c > 0, there exists n € Nwithn > ¢
2. Foralle € R,e > 0, there exists n € N with % <e€

(these statements are equivalent.)

Proof
We will prove the first statement.

On the contrary, assume dc € R,Vn € N,n < c.

Let b = sup N. This must exist because c is an upper bound of N. Since b is the least upper bound,
b — £ is not an upper bound. Therefore, 3n € N,n > b — 1.

Then,n+1> (b—1)+1=>b+ 1 > b. Therefore, n + 1 > b, but n + 1 € N. Therefore, ¢ does not
exist, and so the first statement is true.

Integers will not exist between integers
Let n € Z. There is no integer in (n,n + 1).

Proof
Consider the set {k|k € N,k > 1}. It is an inductive subset of N (by the positivity axioms), and
therefore it is N. Therefore, Vk € N, k > 1.

Since all positive integers are in N, the interval (0,1) "N = &.

Now suppose k € (n,n+ 1) NZ. Then, n < k < n + 1. Therefore, 0 < k —n < 1. k —n € Z. Since
k—n>0andk €Z, k €N. Therefore, k —n € (0,1) NN, but (0,1) "N = &, so k does not exist,
and there is a contradiction.

Sets of integers have maxima
If S is a nonempty set of integers that is bounded above, then S has a maximum.

Proof

Let a = sup S. a is the least upper bound of S. Therefore, a — 1 is not an upper bound. Therefore,
dn € S,a — 1 < n. Therefore, a < n+ 1. Then, S C (—oo,n + 1). By the previous result, (n,n + 1)
contains no elements.

14



(—oo,n+ 1) = (—o0,n] U (n,n + 1). Therefore, S C (—oo,n], and n € S, so n is the maximum of
S.

One integer exist in each interval of size 1

Foranyc e R,3n e N;n € [c,c+ 1)

Proof

letS={n|ne€Zn<c+1}.

Ifc>0,then0 € S.

If ¢ < 0, by the Archimedean property, 3m € N,m > —c. Thus, —m < ¢ < ¢ + 1, therefore —m € S.
Therefore S #+ @.

By the previous result, S has a maximum n.

By defintion of S, n < ¢+ 1.

Ifn<ec—n+1<c+1andtherefore n + 1 € S. But this is impossible since n was the max of
S and therefore n > c.

Therefore,c <n<c+1landson € [c,c+1).
Letn,m € ZN|[c,c+1).
WLOG, assume m < n:
0<n—m<(c+1)—c=1
0<n—-mx<l1
Son—m € [0,1) NZ and therefore n —m =0 — n = m.

A rational exists between any two reals
For any a,b € R with a < b, 3c € Q with a < ¢ < b, and therefore ¢ € (a, b).

Proof
Let % < b — a. Then: (This is incomplete)

nb—1<m<nb

1
a<b—-<D <y
n

N

Dense
Aset S C Ris dense iff Va,b e Rja < b — SN (a,b) # @.

Examples
Q,R\NQ,A,Q\Z

Absolute Value
|-[:R—{zeR|z>0}

15



z ifz>0
|z| = .
—zifzx <0

Properties
1L Ifd>0,|c] <diffd<c<d.
2. Ve eR, —|z| <z < |z

Triangle Inequality
Va,b, € R, |a+b| < |a| + |b]

Proof
—lal <a <la|
—[bl <b <ol
—la] — b <a+0b < |a|l + |b|
—(la| +10]) <a+b< |a| + b
< a4+ b| < |a| + |b|

Some Sums

a — b = ((l o b) Zanflfkbk
k=0
n . 1— rn+1
v =
r#0, kz: r T

=0
Sequences
Sequences

A sequence is some function a : N — R. This is typically written as some a,, rather than a(n).

The entire sequence is denoted like {a,, }.'

Examples

'Or perhaps (a,,) or (a,)>

n=1

16



{n?} ={1,4,9,16,...}
{1+ (-1)"}={0,2,0,2,0,2,...}

1
{a,,} where a,, € (0, —)
n

a; =1,a,,1 =3a,+1,{a,} ={1,4,13,...}

11 1
D B T,
{an} {’4’9’16’ }

{a,) = {Zk}

Ul
- {31}
k=1
Convergence of Sequence
A sequence {a,, } convergestoa € Rif Ve > 0,IN,n > N — |a,, —a| < &.

Therefore, we say:

Jim o, =0
Example: Converge
Prove {a,} = {1} converges to a = 0.
Fix e > 0.
Let N > L. Therefore,n > N > L and:
1
n> -
£
—<e
n
a, <€
la,| <e

Example: Does not converge
Prove {a,} = {1+ (—1)"} does not converge.

Assume {a, } convergestoa.Lete =1,a € R, let N > 0. Let n; be the smallest even number larger
than IV and let n, be the smallest odd number larger than V.

\2—a|=|an1—a’<5

la] =10 —a| = |a,, —a| <e

17



2=12—a+a|

<|2—al+ |al
<|2—a|+e¢
<e+te

<2

But 2 < 2 is false, so it does not converge.

Cannot converge to two different values

(lim a, =aA lim an=b>—>(a=b)

n—,oo n—oo

Proof
Fix ¢ > 0. Then 3N, such that if n > N then |a,, —a| < §, and 3N, such that n > N,, then |a,, —
bl <e.

Consider € = b — a. (WLOG, b > a).
Let N > max{N;, N,}. Then if n > N:
e=1|b—al
=|b—a, +a, —a
<I|b—a,|+|a, —a

<€+€<
-+ =-<e
2 2

But € < ¢ is impossible, and so b > « is false, and therefore a # b.

Create Limit to Zero
{a,,} 2 a+{a, —a} —0

Proof

Prove — direction. Fixe > 0.IN > 0,n > N — |a,, —a| < &.
Therefore, |(a,, —a) — 0| < e.

Prove <« direction. Fixe > 0.3N >0,n > N — |(a,, —a) — 0| <e.
Therefore, |a,, —al < e.

Therefore < is proven

All Convergent Sequences are Bounded
If {a, } converges, then IM > 0,Vn,|a,| < M

Proof
Let a be the limit of {a,, }.

Choose ¢ = 1.

AN,n >N —|a, —a| < L

18



Let M = max{a + 1,|a4],|asy], ..., lan_1|}
Clearly, Vn e NN[1,N — 1], M > |a,,|-
Ifn>N,then M —a, =M —a, —a+a.
Then

M—-a,=M-—aqa,+a—a

=M —a)—(a,—a)
>M—a—1
=M—(a+1)

>0

Comparison Lemma
Suppose {a,,} — a. Then {b,,} — b if 3¢ > 0,3IN; > 0,Vn > Ny, |b,, — b| < c|a,, — al.

Proof
Fix e > 0.
€
Let N = max{N;, N,}. Then if n > N:
13

b, —b| < Cla, — C
by~ bl < Cla, —al < O

=&

Addition of Sequences
If {a,} - aand {b,} — b, then {a,, +b,} = a+b.

Proof

Fix e > 0.

3Ny, Ny,n > Ny = |a, —a| < 5,mn > Ny = [b, — b| < 5.

Then, let N = max{N;, N, }. Therefore:

€

IS
>N — —al < =Ab,—bl <

€
2

>N |(a, —a)+ (b, —b) < la, —al + b, —b| < S+ =2

Multiply Sequence by Constant
If {a,} = a and a € R, then {aa, } — aa.

Proof

Fix e > 0. Vn, |aa,, — aa| = |al|a,, — a| < 2|a||a,, — a

Apply the comparison lemma.

19



Multiply Zero-Valued Sequence by Zero-Valued Sequence
If {a,} — 0and {b,} — 0O, then {a,b,,} — 0.

Proof
Fixe > 0. 3N, Ny,n > N; — |a,, — 0| < v/&e,n > Ny — |b, — 0| < /e

Let N = max{N;, N,}.

n>N = la,b, — 0| =la,b,| < Veve=c¢
Multiply Sequence by Sequence
If {a,} — aand {b,} — b, then {a,b,} — ab.

Proof
Let o, = a, —a, B3, =b, —b.Then {a,,} — 0,{8,,} — 0.

Also, |a, b, — ab| = [(a, +a)(B, +b) + ab| = |, B, + aB,, + ba,|.
Observe that {«,,5,} — 0, {a8,,} — 0, {ba,,} — 0.
Let ¢, = {,, 5, + aB,, + ba,, }. Then, {c,,} — 0 and so {a,b, — ab} — 0, and so {a,b, } — ab.

Reciprocal of sequence
If {b,} — b, and b # 0, then {bl} -

Proof

We must find C, N; > 0, so that if n > Ny, |~ — %’ < Clb—b,|.
1 1 1
e e
b, b| [by[lb|

Therefore, we need to show that {‘b—ln‘} is bounded.
Observe that |b| = |b—b,, + b, | < |b—b,| + |b,|.
Therefore, |b,,| > |b| — |b—b,,|.

Lete = ‘g|

L

Then, 3N > 0 such that if n > N, then [b, —b| <e = 5

Then, |b,| > [b| — [b — b,| > [b — 3 = Z.
1 2
Then, B < o
Therefore:
1 1 1 2
b, b bylb] o]

And therefore, by the comparison lemma, {bl} —

20



Division of Sequences
If {a,} — a,and {b,} — b,b # 0, then {‘Z—"} — 2.

Proof
Lete, = bi. Then, {Z—”} ={a,c,}

By a proposition, {¢c,,} — %, and so {a,c,} — % by a proposition.

Continuous Functions

A subset of the reals is dense based on sequential denseness
S C Ris dense iff, Vz € R, 3{a,,} C S,{a,} — =

Proof
Suppose S C R is dense.

Letz € R. Leta, € SN(z—L,z+ 1)
Fixe > 0.Let N > 1.
Thenifn > N,

(==5er)
a, €lx——,r+—
n n

1 1
r——<a,<T+—
n n

1 1
—<a,—zT<—
n n

] |<1<1<
a, —< - < =
" n_ N ¢

For the alternate direction, suppose that Vz € R, 3{a,,} C S,{a,,} — z.Let (a,b) CR.Letz € “T“’

__ b—a
Let e = 5 -

Ha,} 2 2,IN >0,n > N — |a, — x| <¢,

So:
—e<a,—x<¢
r—e<a,<zxr+e
a, € (r—e,x+e¢)

a, € (a,b)
Since a,, € S, and a,, € (a,b), a,, € SN (a,b),and so S is dense.

Nonnegative sequences converge to a nhonnegative number
If a,, > 0and {a,} — a,then a > 0.

Proof
Suppose a < 0 and let e = %.Then dANn> N = |a, —a| <e=

lal

DR, SO
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2 " 2
a< < a
2 n 2
3a
—<a <=-<0
g S S3

a, <0

But a,, was supposed to have the property a,, > 0. Therefore, the lemma holds.

Squeeze Theoremish Proposition
Suppose {a,,} C [b,c] and {a, } — a. Then, a C [b, ]

Proof
Since a,, > b,a,, —b >0,

{a,, —b} = a—b>0
Similarly, ¢ — a > 0, so:
b<a<e
a € b,c]
Closed Sets

A set A C R is closed if whenever a sequence {a,,} C A converges to a, then a € A.

Example
If A and B are closed, A U B is closed.

Example

Open Set
Aset Ac Risopenif Vz € A,Je > 0suchthat (zr—e,z+¢) C A

Example
@ and R are open and closed.

Relating Closed and Open Sets
A C Risopeniff R\ A is closed.

Go to oo
VM > 0,3N > 0such thatifn > N,a, > M
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Example
{n-(—1)"} does not go to co and is also not bounded.

Monotone
A sequence {a, } is monotone if Vn € N, {a,,.1 } > a, or Vn € N,a,,; < a,,. The first is monotone
increasing, and the latter is monotone decreasing.

Monotone Convergence Theorem
Let {a,, } be a monotone sequence. {a, } converges iff it is bounded.
If {a,} is monotone increasing then {a,, } — sup{a,}. If {a, } is monotone decreasing, then

{a,,} — inf{a,}.

Proof
(—) Suppose {a,, } is monotone and converges. Since {a,, } converges, by a theorem it is bounded.

(«+) Suppose {a,,} is monotone increasing and bounded. Because {a,,} is bounded, the supre-
mum exists. Let a = sup{a,, }.

Fix e > 0.

Then, there exists NV such thata —e < ay < a.

Since it is monotone increasing, Yn > N, a, > ay > a — €. Furthermore, q,, < a.
Thus, |a, —a|=a—a, <a—a, <&

Therefore {a, } — sup{a,,}

Similarly if {a,,} is monotone decreasing, {a,,} — inf{a,, }.

Proposition
n 11
The sequence {Zk=1 E2—k}.

Proof
Leta, = ZZ:I %2% Since Vn € N,a, ., —a, = %H%% >0,a,+1>a,
Therefore it is monotone increasing.
n+1
“1_1-(3) 1
k=1 2 2

Therefore, {a,,} is bounded.

Since it is bounded and monotone increasing, the sequence converges.

Proposition
Leta, = ZZ=1 % {a,, } does not converge.

Proof

a, = — > 0,50 a,.; > a,, and {a, } is monotone increasing.

Opy1 = On n+1

Claim: Vn € N,ag, > 1+ 3.
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Base case (n = 2):

1+ 5

ay = —=—

2 2

Suppose agn > 1+ 3.

Then agni1 = ay
1 1 1

a2n+1 :(12n+2n+1 +2n+2+'+2n+2n

1 1

> Aon +

o ron Congon T ongon

n

Thus, {a,, } is not bounded and therefore does not converge.

Nested Interval Theorem
Suppose A, =la,,b,] for —oo0 <a, <b, <oco. Suppose that Vne N/A,  , C A, Then,

M7, Ay = [sup{a,}, inf{b,}] # 2.

Proof
{a,,} is monotone increasing and bounded: a; < a,, < b,. Therefore, it converges to a = sup{a,, }.
Similarily, {b,,} — b = inf{b,,}.

Claim: ﬂff:l A, = [inf{b, },sup{a, }] and a < b.

By a homework problem, a < b. Let z € [a,b]. Vn € Nyz > a > a, ANz < b <b,. Therefore, Vn €
N,z € A,,andsoz € ﬂ:’zl A,,, and so therefore [a,b] C ﬂ:’zl A,.

oo
Letz € () A,
Therefore, Vn € N:

n

a, <x<b,

x is an upper bound of {a,} and a lower bound of {b,,}, and thisi z > sup{a,} =a and z <
inf{b,,} = b.So z € [a,b).

Subsequence
Let {n,} be a sequence of natural numbers that is strictly increasing (n; < ny, < ng < --).

A subsequence of a sequence {a,,} is {b,} = {ank}.
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This is usually just denoted by {ank }

Example
1
{a,} = {E}
Let n, = k2, and then {ank} ={L 1,5 %, -}
Subsequences of a Convergent Sequence Converge
If {a, } is a sequence that converges to a, then every subsequence also converges to a.

Proof
Fix e > 0.

3N, such thatn > N; — |a,, —a| < e.

Let {ank} be a subsequence of {a,}. Then, {n,} is a strictly increasing sequence of natural num-
bers.

Therefore, AN,k > N — n;, > N;. Thus, if k > N, |ank — a’ <e.
Peak Index

m € N is a peak index of a sequence {a,,} if Vn > m,a,, > a,.
This means that everything in the future is smaller (or the same).

Every sequence has a monotone subsequence.
Every sequence has a monotone subsequence.

Proof
{a,,} has either finitely many peak indices or infinitely many peak indices.

Case 1: Finite Peak Indices
This means that there is N € N so that there are no peak indices greater than N.

Letn; = N + 1. For all , let n;, be an integer such that a,, > a,, . This is possible because
there are no peak indices after N, which means that there is always a bigger point in the future.

Then {ank} is a monotone increasing subsequence.

Case 2: Infinitely Many Peak Indices
Let n;, be the increasing sequence of peak indices. Then, {ank} is monotone decreasing.

Bounded Sequences have convergent subsequences
Every bounded sequence has a convergent subsequence.

Proof

Take a monotone subsequence of the sequence, which is possible by above. Since the sequence is
bounded, the subsequence is bounded, and so since the subsequence is monotone and bounded,
it is convergent.
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Sequentially Compact
A set S is sequentially compact if every sequence in S has a subsequence that converges in S.

S cR,Y{a,} C S,3{n,}, {ank} — a,a € S <> S is sequentially compact.
Example
[0,1]

Let {a,,} C [0,1]. Then {a,,} is bounded, and therefore there is a subsequence that converges. Call
this {ank} — a. Since [0, 1] is closed, any sequence within converges within, and so a € [0, 1], and
therefore [0, 1] is sequentially compact.

Non-Examples
 (0,1)

» {3} —0,0¢(0,1)
e R
» {n} does not converge.

Bolzano-Weierstrass Theorem
A set S is sequentially compact iff it is closed and bounded.

Proof
(—) Let S be sequentially compact set.

Let {a,} C S, so that {a,} - a€R. E{ank} — b e S.But since {a,,} > a,a=bbe S —acsh,
and therefore S is closed.

Assume S is not bounded.
vn eN,a, € S,la,| >n
Let {“nk} be a subsequence of {a,, }.
Let M > 0.Thenifn > M, |a,| >n > M.
Then,if k> M, n;, > k> M, so ’ank| > M. Thus {“nk} — oo and does not converge.
Therefore, S must be bounded.
(<) Let S be a closed and bounded set.

Let {a,,} C S.Then {a,} is bounded, and so a subsequence {ank} converges to a. Because S is
closed {ank} cCS—ach.

Continuous function
A function f: D C R — R is continuous if for all z, € D and all {z,,} C D converging to z,,

lim_f(z,) = f(z,)

Examples
f(z) =322 +22 -1
f:R—=R
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This is a continuous function. Let z;, € R. Let {z,} — z,. Then {f(z,)} = {322 + 2z, — 1} =
3{9571}2 + 2{z,,} — {1} — =z, by various theorems about manipulating sequences.

f(m)z{; i;g,f:R—ﬂR

Let {z,} = {—=}. Then lim,_,  f(z,) =lim,_,, f(—2) =1 but f(0) =2, and therefore f(z) is

discontinuous.
_J0 z€Q

This function is discontinuous everywhere.

Manipulating Continuous Functions
Suppose f,g: D — R are both continuous. Then:
e f -+ g is continuous

e f — g is continuous

e f x gis continuous

e g(x) #0— 5 is continuous

Composing Continous Functions
Let f: U — D and g: D — R be continuous. Then g o f is also continuous.

Proof

Let {z,} C U with {z,} — z, € U. Let y,, = f(z,,). Since f is continuous, {f(z,)} = {v.} —
f(zg) :==1yo. Since f : U — D, {y,,} C D and y, € D. Since g is continuous, {g(y,,)} — 9(y,)- Thus,
{9{f(z.)}} ={9(yn)} = 9(yo) = 9(f(x0)), and therefore g o f is continuous.

Maximum and Maximizer
Let DCR and f: D — R be continuous. If there 3z, € D,Vz € D, f(z,) > f(z), then z, is a
maximizer of f and f(z,) is the maximum value.

Examples
e fz)=1,D=R
» maximizers are R
e f(x)=—2?,D=R
» maximizers are {0}, and a max value of 0.
e f(z)=z,D=(0,1)
» No maximizer
e f(z)y=2,D=R
» No maximizer

Minimum and Minimizer

Let D Cc Rand f : D — R be continuous. If there 3z, € D,Vz € D, f(z,) < f(z), then z, is a min-
imizer of f and f(xz,) is the minimum value.
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Image
Let f:DC A— B, f(D) ={f(x)|z € D}.

Image of a sequentially compact set is sequentially compact
If D is sequentially compact and f : D — R is continuous, then f(D) is sequentially compact.

Proof
Let {y,} C f(D).

For each n, there exists z,, € D such that y,, = f(z,,), by definition of image.

Since D is sequentially compact, there exists a subsequence {xnk} that converges to z, € D.
This can create a subsequence {f(:cnk)} = {ynk}

Since f is continuous, lim,,_, f(xnk) = limy,_, oo Y, = f(2¢) = yo. Therefore, there exists a sub-
sequence of {y,,} that converges in D, and so f(D) is sequentially compact.

Extreme Value Theorem
If f: D — R is continuous, and D is sequentially compact, and f has both a maximizer and a
minimizer in D or f attains both its max and minimum values.

Proof
Since D is sequentially compact and f is continuous, f(D) is sequentially compact. We will show
that f(D) has a maximum.

Since f(D) is sequentially compact, it is closed and bounded. Therefore, sup f(D) exists.

vn € N, leta,, € f(D) such that sup f(D) — £ < a,, < sup f(D).Fixe > 0.Let N > 1. Thenifn >
N,

Since {a,,} — sup f(D) and f(D) is closed, sup f(D) € f(D) and thus f(D) contains a maximum
value (sup f(D)).

Similarly, f(D) has a minimum value.

Intermediate Value Theorem
If f is continuous on the interval [a,b], and f(a) < c¢ < f(b) or f(b) <c < f(a), then Jz €
[a, 8], f(z) = c.

Proof
Without loss of generality, f(a) < f(b). Let f(a) < ¢ < f(b).

Leta;, = a,b; = b.Forn € N, let m,, = %20 1f f(m,) < cleta,,, = m,,b,,; = b,. Otherwise, if
f(mn> > ¢, let Apt1 = On, bn+1 =My .

We claim that

<b <b,<b

n

Vn,a<a, <a

n+1 n+1
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Base step: b; > a;.

Inductive step:

. b, _ butb
If fﬁ > an,+then either b, , =0b, and a, | = a"; n < ";r % <b,,,0ra, ,=a,and b, ;=
T2 Ty = g

. . . . b
Outside of induction, if @, = a,,, then a,, < a, ;1. If @,y =m, = “ooon > “atin — g

This is similarly the case for b,,.

{a,,} and {b,} are monotone and bounded, so {a,} — a, and {b,} — b,.
We claim that Vn,b,, > a,.

Suppose b,, < ay. Then, there exists m such thatb,, < a,, < a,.

Without loss of generality, m > n. Since the sequences are monotone, b,, < b, < a,, < a,, and
therefore b,, > a,. Similarily, Vn, a,, < b,.

Consider {b,, — a,,} — by — a,-

b —a = 2 9 _bu—a,
n+1 n+l = a =
bn _ n;’_bn 2
By induction, b,, —a,, = 1’2’—,{1 {I’z’—n‘l} — 0, and therefore 0 = b, — a,. By continuity, lim,,_,  f(a,,) =
flag) and lim,,_,  f(b,,) = f(by). By construction, f(a, ) < ¢, and f(b,) > c. Therefore, f(ay) < ¢,

and f(b,) > c.
c < f(bg) = flag) < c— f(bg) = flag) =c¢
Roots exist
Ve>0meNdJreR z™ =c
Proof
flz) =™

Note f(0) = 0 and therefore 0 < c. Further note f(c+1) =c¢™ + ...+ mc+ 1 > ¢ because m € N
and therefore m > 1.

By the intermediate value theorem, there exists x € [0, ¢ + 1] such that 2™ = c.

Image of an interval is an interval
If I is an interval and f is continuous, then f(I) is an interval.

Proof
Case 1: I = [a, b]. Since I is sequentially compact, we can let & = min(f(I)), 5 = max(f(I)). We
claim that f(I) = [«, 3].

Let f(z,) = a, f(z5) = . WLOG, assume z; < z,. Let a < ¢ < f. Then Tz € [z, 25|, [z1, 23] C
[a, b] such that f(x) = c. Thus, c € f(I) and f(I) = [a, (]

29



Uniform Continuity
A function f : D — R is uniformly continuous if for all sequences {a,,}, {b,} C D iflim,_, . (a,, —

b,) = 0 then lim,,_, . (f(u,) — f(v,))-

Example
f(z) = 2? is not uniformly continuous.

Let {a,} =nand {b,} = {n+ L}. Then, {a, —b,} ={-1} —0.
But {f(a,) — f(b,)} = {n?— (n— 1"} = {n? —n? —2- L} = {-2- L} > 2
Intuitively, the slope increases too fast.

Example
f(z) = L is not uniformly continuous on (0, 1).

Continuous from uniform continuity
Every uniformly continuous function is continuous.

Proof
Let {b,,} = {z,} C D.

Then, {a,,} = x4 <> {a, — b, } — 0.

Then, {/(a,,) — f(b,)} = 0, which is equal to {f(a,) — f(zy)} — 0, 50 {f(a,)} = f(z,), which is
equivalent to the definition of continousity.

Uniform continuity from Continuity
Suppose f : D — R is continuous and D is sequentially compact, then f is uniformly continuous.

Proof
Suppose f is not uniformly continuous. Then there exists {a,},{b,,} C D such that {a,, —b,,} —

Then there exists € > 0 and subsequences also called {a,, }, {b, } such that |f(a,,) — f(b,)| > ¢ for
all n.

By sequential compactness, there exists {ank}, {bnk}z such that {ank} — a and {bnk} — b,
a,b € D. Since {a, —b,} =2 0,a=b=1z, € D.

Then {f(a, )} = {f(zo)} and {f(b,,)} = {f(xo)}. Then, {f(a, )~ F(bn,)} = flzo) -

f(zy) =0, but 0 < ¢, a contradiction.

Epsilon-Delta Criterion
f: D — R satisfies the e — ¢ criterionatzy, € Dif Ve > 0,36 >0, |z —zy| <INz € D — |f(z) —
flzo)| <e

2This is questionable, but it does work by first finding a {ank} — a, and then finding a subsequence of {bnk }
such that {bnk } — b. Since {ank} —a, {ank } — a, and so these subsequences do exist
k k
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Example
Show that f(z) = 23 satisfies the ¢ — § criterion at z, = 2.

Scratch
|(z —2)]
=|(z —2)(2® + 2z +4)|
= |2% + 2z + 4| |z — 2|

—
not huge small

Assume |z — 2| < 1. Then,

< 19|z — 2

Proof
Fix ¢ > 0. Choose § < min{1, 5 }.

Since |z — zy| < ¢, then |z — z,| < 1 and then by above,

2 —23 <196 <195 =¢

Relating epsilon-delta criterion and continuity
Let f : D — R be continuous iff it satisfies the epsilon-delta criterion at all z, € D.

Uniformly Continuity by ¢ — § criterion
f:D — R is uniformly continuous iff Ve > 0,35 > 0 such that Vu,v € D, if |[u —v| < ¢ then

|f(u) — fv)| <e.
This makes sense because uniformness means that the § only depends on «.
Example
Prove that f(z) = z? is continuous at = = x, using the € — § criterion.
Fix e > 0.
Scratch
If |z — 24| < 6 Then
|f(2) — f(zo)] = |2® — 2]
= |z — zp||T + 7|
< (|| + |zol)
< 0(2|zg| +9)
< 0(2]zp| +1)
5(2zg) +1) = € — 6 = mi ( € 1)
T =€ =mn| ——,
0 2|zo| +1

Work
Let 6 = min 5577, 1)-
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|z — x| <0
[f(@) = fzo)] <z —olllx] + flzo)] <(2lzo| +1) <e

This would not work for uniform continuity since § depends on z,.

Monotone Function
f: D — R is monotone increasing if Va,b € D such that a < b, f(a) < f(b) or is monotone de-
creasing if Va,b € D such that a < b, f(a) > f(b).

Continuity by image and monotone
If f: D — R is monotone such that f(D) is an interval, then f is continuous.

Proof
Suppose f(D) = I, but f is not continuous.

Then, there exists a sequence {z, } — z, such that {f(z,)} + f(zg).

Lety,, = f(z,), Yo = f(zo). Then there exists € and a subsequence y,, so that Vk, |y, — y0’ > e
WLOG, assume f is monotone increasing.

Then, there are subsequences we will also call {ynk} and {xnk} such that {mnk} is monotone.
WLOG, assume {xnk} is monotone increasing.

Since f(xnk) = Yn, < Yo —€and f(z,) = y,, there must exist a z* € (z,,, z,) such that f(z*) =
Yo — &

Since {=,, } — x,, there is a k such that o* <z, <z, but f(z, )=y, andy, <gy,—& so
this shouldn’t be true and therefore there is a contradiction.

Strictly Monotone Function
A function f : D — R is strictly monotone increasing if whenever z,y € D such that z < y, then
f(z) < f(y). For strictly decreasing, z < y implies f(z) > f(y).

Put simply, monotone but cannot go sideways.

Strictly monotone functions are injective
A strictly monotone function is injective.

Proof
Let f: D — R be strictly monotone. WLOG, assume it is increasing.

Let z,y € D such that f(z) = f(y). On the contrary, assume z # y. WLOG, assume z < .
Since z <y, f(z) < f(y), but f(z) = f(y) so this is impossible and therefore a contradiction.

Therefore = y, and f is injective.

Strictly monotone functions can be bijective
If f is strictly monotone, then f : D — f(D) is bijective.
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Strictly monotone functions can have an inverse
A strictly monotone function f : D — f(D) has an inverse f~!.

Inverses are continuous
If Dis aninterval and f : D — f(D) is strictly monotone, then f~! : f(D) — D is continuous.

Proof
Firstly, f~! exists by above, and f~1(f(D)) = D.

Let a,b € f(D) such that a < b. WLOG, assume f is monotone increasing.

Letz = f!(a) and y = f~'(b). Therefore, a = f(z) and b = f(y). Therefore, a < b and so f(z) <
f(y) and therefore z < y.

Thus f~1(a) < f~1(b). Since f~! is monotone and f~!(f(D)) is an inverval, f~! is continuous.

zn exists and define z"
Letn € Nand f:[0,00) — R be defined by f(z) = z™. Then, f is strictly monotone increasing.

. . . . m m
f~! exists and is denoted f~!(z) = zw. It is continuous. Then, z'% = (w%) .

Let r € (0, 00).

a, 3

Let {a, } C Q such that {a, } — r. Define 2" = lim x

n—oo
Limit Point

Let D C R. z, € R is a limit point of D if 3{x,,} C D\ {z,} such that {z,} — =,

Limit

f: D — Rhas alimit L as z approaches a limit point z, if for all sequences {z,} C D\ {z,} such
that {z,,} — =y, {f(z,)} — L.

This is written:

Algebraic Limit Theorem
If limz—)zo f(.’E) = Ll? limz—)zo f(.’E) = L2:
lim f(z)+g(z) = Ly + Ly

T—=T)

lim f(z) —g(x)

T—=T)

lim f(z)g(x)

T—=Tq

(x) L
-2

5

L,#0— lim

z—=zo (T

~—

Continuous Functions and Limits
Iff f: D — Ris continuous and z, € D and z, is a limit point of D

3Unproven that this exists but oh well it does.
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lim f(z) = f(zo)

T—Tq

Limit Definition of the Derivative
f: D — Ris differentiable at z, € D if z is a limit point of D and

Fon) — tim £@ =0

=T T —x

exists, and f’(z,) is the derivative.

Example
Find f’(x) for f(z) = mx + b.
. f@)—flzg) . mz+b—mzo+b . x—zy
lim —————= = lim = lim m = lim m=m
T—=To T — Zg =T T — T, T=Ty T — X =T

Therefore f'(z) = m.

Example
Find f'(x) for f(z) = x™.

n n

f'(z) = lim _ i BT )@ @oa P+ apat Pk o e )

T—=Ty T — J,‘O T—Tq xTr — xo

= lim (2" + 202" 2 + 2" + o+ 2fPw + 2f )
T

=2l +2grl 2+ 223 4 a2 + 2!

— n—1
= NI

Differentiability implies continuity
A differentiable function is continuous.

Proof
Let f : D — R be differentiable.

Then, Vz, € D
f(z) — f(zo)

T—T xr — xo

exists

Furthermore, lim,_,, = —x, =0

Then:

lim f(z) — f(zy) = lim M(m’—xo) = lim @) = flwo) lim (x — z;)

T—Tq T—Tq T — X T—Tq T —x T—Tq

:(lim M)O:O

T—Tq xTr — xo

Since f(z,) — f(zy) = 0 at each point, f(z) is continuous.
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Example: It’s not the other way
Show |z| is not differentiable at z, = 0.

N e
lim ————— = lim —
z—=0 x—0 z—=0 I

Take the sequences {a,, } = {1/n} and {b,} = {—1/n}.
(=)
ba 1 _

U}

But 1 # —1, so the limit does not exist.

3 |~|: =
——
I

—N—
[ ]|
3|3 |~
—
Il
|
N B e e e
Il
|
p—

Combining Derivatives
If f,g: D — R that are differentiable, then:

1L (f+9)(2)=f(z)+9(2)

2. (f9)'(z) = f'(z)g(x) + f(2)g'(x)

3. (1) (2) = 25, it g(a) # 0

4. (1) (@) = LALGI it () # 0
Proof

Let z, € D.

f(@) + g(x) — (f(2o) + 9(x0))

(f+9) (x9) = lim

T T — T

o J@ = (@) | 9(@) = glao)
=Ty T — X x —x

— lim f(z) — f(=zg) 1 lim g(x) — g(x)
1'—)1'0 xr — {L'O I—):DO xr — wo

= ['(o) + g’ (zo)
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(f9) (zo) = lim f(x)g(x) — f(zg)g(zg)

T—Tq T — Xy

_ i T®@)9(@) + F(2)9(x0) — f(2)g(20) — f(20)9(20)
T T —x

~ lim f(@)g(x) — f(z)g(xo) + f(z)9(x0) — f(T0)9(20)
T—T T — X

i F@0(@) — @) | f@glm) ~ fap)gleo)
T—Tq Tr—x T — X

i o 2E) =90 | 1(@) — F(z)

g T — T —

+ lim g(zy) lim —f($> — /(=)

T—Tg T—Tq T —x T—Tq T—Tq T — X

Neighborhood
Let z, € R. I C R is a neighborhood of z, if I is an open interval z,.

Change of variables for limits
Let z, € R, I be a neighborhood of z,, and f : I — R be continuous.

Then, if y, = f(z,) and lim,_,,, g(y) exists,

lim g(f(z)) = lim g(y)

T—=To Y—=Yo
Proof
Let J = f(I). J is an interval that contains y,,.
Let {z,} C I, {z,} — =,
Lety,, = f(z,)- {v,} — y, due to continuity.
We know lim,_,, g(y) = L, so {g(y,)} — L.
Furthermore, {g(f(z,))} — L
So lim, , g(f(z)) = L.

Invertibility for change of variables
If f: I — R is continuous and invertible then, Vz, € I,y, = f(z,), then

lim g(f(z)) = lim g(y)

=T T—=Tq

Derivative of Inverse
Suppose z, € R, I is a neighborhood of z, and f : I — R is differentiable with f’(z,) # 0, then if
f is invertible:
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Proof
Lety = f(x).

Derivative of Root

Chain rule
Suppose f: I — Rand g: f(I) — R are differentiable.

Then,
(9o f) () =g (f(2))f (z)
Proof
Letzy € I,y = f(z), yo = f(zg)-
9(f(@) —9(f(zo)) _ 9(y) —g(yo) f(z) — flzo)

T — Ty Y—Y T — Ty

If a neighborhood I’ of z,, I’ C I where f is invertible exists, then
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@) — g ()

T T — Ty
flz) — (@) . 9) —9(o)
Tz T — I Y—=Yo Y — Yo
= f"(0)g" (o) = [/ (z0)g" (f ()
If it is not invertible at z = z, then there {y,,} — z, and {z,} — =, {y,}, {2,} C I such that
Y, F 2, but f(y,) = f(z,) foralln € N.

Then
f(zg) = lim f@) = @)y 1) = J(o)
T—Tg T — XTg n—o00 Yp — Tg
_ i () = f(0)
n—oo zn P mo

Power Rule (for rationals)
Letr € Q,r > 0.Let f(z) = z". Then, f'(z) = rz" 1.

Proof
Let r = ™. Let g(z) = 2™ and h(z) = z=. Then, f(z) = g(h()).
By the chain rule, f'(z) = h'(z)g’ (h(z)).

g'(@) = ma™ L W () = Fai?

The Derivative is Zero at a Maximzer
Suppose f : [a,b] — R is differentiable with maximizer z, € (a,b). Then, f'(z,) = 0.

Proof
T—Tq Tr—x %E?xg T — X
o J@) S
Sy T %o

If z <z, f(z) — f(zy) <0,and z — z, < 0, and so therefore:
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f(@) — f(z)

>0
Therefore:
i J@) = F0)
$25 T %o

Alternatively, if z > z,. f(z) — f(zy) >0,z — x, > 0, and so therefore:

f(@) — f(zg)

T —

<0

Therefore f'(z,) = 0.

Rolle’s Theorem

Suppose f : I — R is differentiable, and suppose a,b € I such that a < b, and f(a) = f(b). Then,
Jz, € (a,b) such that f'(z,) = 0.

Proof

f is continuous on [a, b]. Let m = min f(z), M = max f(z).
z€la,b) z€la,b]

Case :m=M

Then f(x) is constant for all z € (a,b), so f'(z) =0 for all z € (a,b).
Case 2: f(a) =m V f(b)=m,m#+ M

Then, M = f(z,), z, € (a,b).

Case 3: f(a) = M V f(b) = M,m # M.

Then, the maximum of g, g = —f, occurs at z;, € (a,b), and f'(z,) = —g'(z().
Case 4: M € f(zg),z, € (a,b):

By the lemma, f’(z,) = 0, orin case 3, ¢'(z,) =0 = f'(z,) = 0.
Mean Value Theorem

Let f : I — R be differentiable. Let a,b € I, a < b.

Then, 3z, € (a,b), such that f'(z,) = W

Proof

_ f(b)—f(a)
Let g(z) = f(z) —z—F——

g : I — R is differentiable and g(a) = g(b).
f) —fla) _ fla)(b—a)+af(b) —af(a) _bf(a) —af(a)+af(b) —af(a)

g(a) = fla) —a™———— = — = —
o(b) = () _bf(bl);:j:(a) _ f(b)(b—a)b+_b£(b) —bf(a) _ bf(d) —af(b;ier(b) —bf(a)

By Rolle’s theorem, ¢’(z,) = 0. f'(zy) = ¢’ (zy) + f(bl)):f:(“) = f(bl);ﬁ(“).
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Identity Criterion
f: I — Ris constant iff f' =0.

Proof
(=) If f(z) =c, then
f(z) — f(z) c—c

f'(z) = lim = lim = lim 0=0
1'_)1'0 xr — :I,'O :L'—):DO €T — .’L'O l'—)$0

(<) Suppose f’(xz) = 0. Choose z, € I and let f(z,) = c.
Let z € I. Then, by the MVT, 3z, € (z, z,) such that f/(z,) = £Z=1®@ _ g

To—T

Thus, f(z) = f(z,) = c for all z.

Equal derivatives differ by a constant.
If f,g:1 — R are differentiable and f'(xz) = ¢'(z) for all z € I, then 3¢ € R such that f(z) =
g9(z) +c

Proof
Let h(z) = f(z) — g(x). Then h'(z) = f'(z) — ¢’(x) = 0. Then by the lemma, h(z) = ¢ for some
c € R.Thus, f(z) = g(z) +c.

Strictly Increasing by derivative
Suppose f : I — R is differentiable, then f(z) is strictly monotone increasing if f’(z) > 0 for all
z el

Proof
Suppose f’(x) > 0 for all z. Then, let u,v € I, u < v. Then, by the MVT, 3z, € (u,v) such that
v)— u
PR (O (CI I
v—Uu

Thus f(v) > f(u).

Example

s f/(0)=0
e f is not monotone near ®
e f’(z) is not continuous.

Example
Show that 1 4+ = + z® = 0 has exactly one solution.

f(z) =1+ z + x° is continuous on the real numbers.
f0)=1,f(-1)=—1
By the IVT, 3z, € [-1,0], f(z,) =0
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Suppose there exists z; # z, such that f(z;) = 0. Since f is differentiable, we can apply the MVT
to see that there exists z € (z, z;).

f(xq) — f(zg)

L1 —Zg

f'(e) = =0

But f/(z) = 2* + 1> 0,s0 f'(z) > 0, but f/(z) = 0, a contradiction, and therefore there is at most
one root.

Cauchy Mean Value Theorem

Suppose f,g: [a,b] — R are continuous and differentiable on (a,b) and Vz € (a,b), ¢’ (z) # 0.
Then, 3z, € (a,b):

Proof
Let

g(b) —g(a) #0
because otherwise, there exists x; € (a,b) such that ¢’(z,) = 0 by Rolle’s theorem.

Note that h(a) = h(b), which can be verified with algebra.

fb)=f@) _ g

By Rolle’s theorem, 3z, € (a,b) such that h’'(z,) = 0, and therefore f’'(z,) — g/(xO)g(b)fg(a)

And finally:

Vague Taylor-series-like statement
Let f : I — R be n-times differentiable such that for some point =, € I

Fzo) = [ (o) = " (zg) = -+ = " D(xg) =0

Then for any = #+ z,, « € I, there exists z between z an z,, such that

™ (2)
f@) = T2 (@ —zg)"
n:
Proof
(o \P ; fay) _ fle)—flzo) _ flo)
Let g(z) = (x — z,)". By the CMVT, there exists z; € (z,, ) such that TG = s@—e = 3@

By the CMVT applied to f" and ¢’ in (z,, ;). Then, there exists z,, € (zy,z;):

[ () _ [/ (1) — f(zg) _ f'(zy) _ f(z)
9" (z3)  g(z1) —9'(zg) ' (z1) 9g(@)
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Apply n times to get z,, € (z,, z) such that
1™, _ f@)
g™ (z,) g(z)
f"(z,)  flx)

n! (x — )

z = z,, and we have proven the theorem.
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